Random Orthogonalization for Federated Learning in Massive MIMO Systems

نویسندگان

چکیده

We propose a novel communication design, termed random orthogonalization , for federated learning (FL) in massive multiple-input and multiple-output (MIMO) wireless system. The key novelty of random orthogonalization comes from the tight coupling FL two unique characteristics MIMO - channel hardening favorable propagation. As result, can achieve natural over-the-air model aggregation without requiring transmitter side state information (CSI) uplink phase FL, while significantly reducing estimation overhead at receiver. extend this principle to downlink develop simple but highly effective broadcast method FL. also relax assumption by proposing an enhanced design both communications, that does not rely on or Theoretical analyses with respect machine performance are carried out. In particular, explicit relationship among convergence rate, number clients, antennas is established. Experimental results validate effectiveness efficiency MIMO.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

channel estimation for mimo-ofdm systems

تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با ‏خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز ‏الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی ‏محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...

Deep Learning for Massive MIMO CSI Feedback

In frequency division duplex mode, the downlink channel state information (CSI) should be sent to the base station through feedback links so that the potential gains of a massive multiple-input multiple-output can be exhibited. However, such a transmission is hindered by excessive feedback overhead. In this letter, we use deep learning technology to develop CsiNet, a novel CSI sensing and recov...

متن کامل

A New Approach for Inversion of Large Random Matrices in Massive MIMO Systems

We report a novel approach for inversion of large random matrices in massive Multiple-Input Multiple Output (MIMO) systems. It is based on the concept of inverse vectors in which an inverse vector is defined for each column of the principal matrix. Such an inverse vector has to satisfy two constraints. Firstly, it has to be in the null-space of all the remaining columns. We call it the null-spa...

متن کامل

Composite Channel Estimation in Massive MIMO Systems

We consider a multiuser (MU) multiple-input multiple-output (MIMO) time-division duplexing (TDD) system in which the base station (BS) is equipped with a large number of antennas for communicating with single-antenna mobile users. In such a system the BS has to estimate the channel state information (CSI) that includes large-scale fading coefficients (LSFCs) and small-scale fading coefficients ...

متن کامل

Uncoordinated pilot decontamination in massive MIMO systems

This work concerns wireless cellular networks applying time division duplexing (TDD) massive multiple-input multiple-output (MIMO) technology. Such systems suffer from pilot contamination during channel estimation, due to the shortage of orthogonal pilot sequences. This paper presents a solution based on pilot sequence hopping, which provides a randomization of the pilot contamination. It is sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Wireless Communications

سال: 2023

ISSN: ['1536-1276', '1558-2248']

DOI: https://doi.org/10.1109/twc.2023.3302335